Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 50
1.
J Chromatogr A ; 1722: 464888, 2024 May 10.
Article En | MEDLINE | ID: mdl-38613932

Liquid-liquid chromatography (LLC) is a separation technique that utilizes a biphasic solvent system as the mobile and stationary phases. The components are separated solely due to their different distributions between the two liquid phases. Gradient change in the mobile phase composition during the chromatographic process is a powerful method for improving the resolution of separation or shortening the process time. Gradient elution readily applies to LLC with biphasic solvent systems in which the stationary phase composition remains nearly constant when the mobile phase composition changes. This work proposes a model-based approach to optimize gradients in LLC and circumvent tedious trial-and-error experiments. The solutes' distribution constant depends on the mobile phase composition. Thus, the distribution constants were described as a function of the content of one of the solvents (= modifier) in the mobile phase. The dispersive and mass-transfer effects in the tubing and the column are modeled with a stage model. Only a few experiments are required to determine the model parameters. After the validation of the model and its parameters, the model can be used for LLC gradient optimization. The proposed approach was demonstrated for a gradient LLC separation of a mixture of four cannabinoids. Two different gradient shapes, one-step and linear gradient, were considered. For a pre-selected minimal purity requirement, the gradient was optimized for maximum process efficiency, defined as the product of productivity and yield. An experiment conducted with the optimized gradient conditions was in good agreement with the simulation, showing the potential of the proposed method.


Cannabinoids , Cannabinoids/isolation & purification , Cannabinoids/chemistry , Cannabinoids/analysis , Chromatography, Liquid/methods , Solvents/chemistry , Models, Chemical
2.
Fitoterapia ; 175: 105919, 2024 Mar 26.
Article En | MEDLINE | ID: mdl-38537888

Carob (Ceratonia siliqua L.) corresponds to an evergreen leguminous tree (Fabaceae family). The high phenolic content of numerous parts of carob has been deeply associated with several nutritional and functional benefits. The aim of this study was to investigate the physicochemical properties of ground carob pods and seeds, the effect of different extraction procedures as well a comprehensive phytochemical characterization of hydro-methanolic extracts (80/20 v/v) of pods and seeds by HPLC-DAD ESI-Q-TOF-MS/MS. Additionally, their antioxidant activity was evaluated using in vitro assays. The results showed thatthe dry matter (DM) values were 88.09% for pods and 89.10% for seeds, protein contents were 0.41 g/100 g DM for pods and 0.88 g/100 g DM for seedsand total sugars contents were 0.35 g/100 DM for pods and 26.70 g/100 g DM for seeds. Furthermore, the oil holding capacities (OHC) were 10.43 g/g for pods and 7.53 g/g for seeds, while the water holding capacities were 8.46 g/g for pods and 2.59 g/g for seeds.The hydro-methanolic extracts of both pods and seeds showed the presence of 53 secondary bioactive metabolites belonging to various classes(flavonoids, phenolic acids, tannins and non-phenolic compounds). The antioxidant activities were evidenced in DPPH (22.24 mg/ml for pods and 26.37 mg/ml for seeds), ABTS (198.50 mmol Eq Trolox/100 g for pods and 201.04 mmol Eq Trolox/100 g for seeds) and FRAP (0.39 mmol Eq Trolox/100 g for pods and 0.53 mmol Eq Trolox/100 g for seeds).Moreover,high significant (p ≤ 0.01) correlation coefficients were found between the antioxidant activity estimated by the DPPH method and total phenols (r = 0.943), orthodiphenols (r = 0.996), flavonoids (r = 0.880) and flavonols (r = 0.982). Nevertheless, lower correlations were detected with ABTS and FRAP methods.These results demonstrated that carob parts displayed an interesting potential that can be of interest for further valorizations as a natural antioxidant with multiple applications, namely functional food ingredients or prevention of many health problems.

3.
J Sci Food Agric ; 104(7): 3971-3981, 2024 May.
Article En | MEDLINE | ID: mdl-38252561

BACKGROUND: Symphytum (comfrey) genus, particularly Symphytum officinale, has been empirically used in folk medicine mainly for its potent anti-inflammatory properties. In an attempt to shed light on the valorization of less known taxa, the current study evaluated the metabolite profile and antioxidant and enzyme inhibitory effects of nine Symphytum species. RESULTS: Phenolic acids, flavonoids and pyrrolizidine alkaloids were the most representative compounds in all comfrey samples. Hierarchical cluster analysis revealed that, within the roots, S. grandiflorum was slightly different from S. ibericum, S. caucasicum and the remaining species. Within the aerial parts, S. caucasicum and S. asperum differed from the other samples. All Symphytum species showed good antioxidant and enzyme inhibitory activities, as evaluated in DPPH (up to 50.17 mg Trolox equivalents (TE) g-1), ABTS (up to 49.92 mg TE g-1), cupric reducing antioxidant capacity (CUPRAC, up to 92.93 mg TE g-1), ferric reducing antioxidant power (FRAP, up to 53.63 mg TE g-1), acetylcholinesterase (AChE, up to 0.52 mg galanthamine equivalents (GALAE) g-1), butyrylcholinesterase (BChE, up to 0.96 mg GALAE g-1), tyrosinase (up to 13.58 mg kojic acid equivalents g-1) and glucosidase (up to 0.28 mmol acarbose equivalents g-1) tests. Pearson correlation analysis revealed potential links between danshensu and ABTS/FRAP/CUPRAC, quercetin-O-hexoside and DPPH/CUPRAC, or rabdosiin and anti-BChE activity. CONCLUSIONS: By assessing for the first time in a comparative manner the phytochemical-biological profile of a considerably high number of Symphytum samples, this study unveils the potential use of less common comfrey species as novel phytopharmaceutical or agricultural raw materials. © 2024 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Antioxidants , Benzothiazoles , Comfrey , Sulfonic Acids , Antioxidants/chemistry , Comfrey/chemistry , Butyrylcholinesterase , Acetylcholinesterase , Plant Extracts/pharmacology , Plant Extracts/chemistry , Phytochemicals/pharmacology
4.
Molecules ; 28(17)2023 Aug 30.
Article En | MEDLINE | ID: mdl-37687171

Peppers are among the spices possessing a wide plethora of biological properties due to their excellent supply of health-related metabolites. Capsicum annuum L. (Solanaceae) is cultivated throughout Tunisia, and there is a shortage of information on the identification of the secondary metabolites in the seeds of this species as well as on their biological activities. In the present work, we intended to undertake a chemical characterization of the bioactive compounds from the hydro-methanolic seed extract of C. annuum as well as an evaluation of its broad spectrum of antimicrobial and antioxidant activities. The chemical profile was evaluated by RP-HPLC-DAD-QTOF-MS/MS, whereas the total phenol and flavonoid content, antioxidant, and antimicrobial activities were determined in in vitro assays. In this work, 45 compounds belonging to various phytochemical classes, such as organic acids (2), phenolic compounds (4 phenolic acids and 5 flavonoids), capsaicinoids (3), capsianosides (5), fatty acids (13), amino acids (1), sphingolipids (10), and steroids (2) were identified in the hydro-methanolic seed extract of C. annuum. The phenolic and flavonoid content (193.7 mg GAE/g DW and 25.1 mg QE/g DW, respectively) of the C. annuum extract correlated with the high antiradical activity (IC50 = 45.0 µg/mL), reducing power (EC50 = 61.3 µg/mL) and chelating power (IC50 = 79.0 µg/mL) activities. The hydro-methanolic seed extract showed an important antimicrobial activity against seven bacterial and four fungal strains. In fact, the inhibition zones (IZs) for bacteria ranged from 9.00 ± 1.00 mm to 12.00 ± 0.00 mm; for fungi, the IZs ranged from 12.66 ± 0.57 mm to 13.66 ± 0.57 mm. The minimal inhibition concentration and minimal bactericidal concentration values showed that the extract was more effective against fungi than bacteria.


Capsicum , Antioxidants/pharmacology , Tandem Mass Spectrometry , Phenols/pharmacology , Flavonoids/pharmacology , Methanol , Plant Extracts/pharmacology
5.
J Chromatogr A ; 1708: 464361, 2023 Oct 11.
Article En | MEDLINE | ID: mdl-37722348

In liquid-liquid chromatography (LLC), mixture components are separated due to their different distribution between the phases of a biphasic liquid system composed of three or four solvents. LLC separations are typically modeled assuming that only the solutes distribute between the two liquid phases and their distribution can be described with a concentration-independent distribution constant. With increasing solute concentration, the physicochemical properties of the biphasic system change, and the distribution of the solutes becomes a function of their concentration. However, the experimental determination of liquid-liquid equilibria in multicomponent systems is time-intensive, and its prediction using thermodynamic models is often not sufficiently accurate for process design purposes. Thus, in this work, we propose a simple approach to model and simulate LLC separations in the nonlinear (concentration-dependent) range of the solutes' distribution equilibria, namely cannabidiol (CBD) and cannabigerol (CBG). Using the inverse method, the distribution equilibrium equation parameters were estimated from pulse injection experiments of single solutes at concentrations ranging from 1 to 100 mg/mL and 1-50 mg/mL for CBD and CBG, respectively. The obtained parameters were then successfully used to predict the elution profiles of binary mixtures of different compositions at 40 mg/mL total cannabinoid concentration. The approach was demonstrated and validated for CBD and CBG as model compounds and n-hexane/methanol/water 10/7.5/2.5 (v/v/v) as the biphasic solvent system. It should be noted that the applicability of the proposed approach is system-dependent, and hence, it should be evaluated for each separation task individually.


Cannabidiol , Solvents , Methanol , Thermodynamics , Chromatography, Liquid
6.
Antioxidants (Basel) ; 12(8)2023 Jul 28.
Article En | MEDLINE | ID: mdl-37627509

The Salvia genus comprises about 1000 species endowed with medicinal, aromatic, cosmetic, and ornamental applications. Even though the genus is one of the most-studied taxa of the Lamiaceae family, data on the chemical composition and biological properties of certain locally used Salvia species are still scarce. The present work aimed to evaluate the phytochemical profile and antimicrobial, antioxidant, and cytotoxic potential of ten Salvia species that grow in Eastern Europe (e.g., the Republic of Moldova). LC-HRMS/MS metabolite profiling allowed for the annotation of 15 phenolic and organic acids, 18 flavonoids, 19 diterpenes, 5 sesterpenes, and 2 triterpenes. Multivariate analysis (e.g., principal component analysis, hierarchical cluster analysis) revealed that S. austriaca, S. nutans, and S. officinalis formed individual clusters, whereas the remaining species had a similar composition. S. officinalis showed the highest activity against Staphylococcus aureus and Streptococcus pneumoniae (MIC = 0.625 mg/mL). As evaluated in DPPH, ABTS, and FRAP assays, S. officinalis was one of the most potent radical scavenging and metal-reducing agents (CE50 values of 25.33, 8.13, and 21.01 µg/mL, respectively), followed by S. verticillata, S. sclarea, S. kopetdaghensis, S. aethiopis, and S. tesquicola. Pearson correlation analysis revealed strong correlations with rosmarinic acid, luteolin-O-glucuronide, and hydroxybenzoic acid. When the cytotoxic activity was evaluated in human breast carcinoma MCF-7 and MDA-MB-231 cells, no significant reduction in cell viability was observed over the concentrations ranging from 25 and 100 µg/mL. The results confirm the potential use of understudied Salvia species as promising sources of antioxidant compounds for developing novel pharmaceutical, nutraceutical, or cosmeceutical products.

7.
Phytochemistry ; 213: 113770, 2023 Sep.
Article En | MEDLINE | ID: mdl-37331573

Bioactivity-guided isolation of natural products from plant matrices is widely used in drug discovery. Here, this strategy was applied to identify trypanocidal coumarins effective against the parasite Trypanosoma cruzi, the etiologic agent of Chagas disease (American trypanosomiasis). Previously, phylogenetic relationships of trypanocidal activity revealed a coumarin-associated antichagasic hotspot in the Apiaceae. In continuation, a total of 35 ethyl acetate extracts of different Apiaceae species were profiled for selective cytotoxicity against T. cruzi epimastigotes over host CHO-K1 and RAW264.7 cells at 10 µg/mL. A flow cytometry-based T. cruzi trypomastigote cellular infection assay was employed to measure toxicity against the intracellular amastigote stage. Among the tested extracts, Seseli andronakii aerial parts, Portenschlagiella ramosissima and Angelica archangelica subsp. litoralis roots exhibited selective trypanocidal activity and were subjected to bioactivity-guided fractionation and isolation by countercurrent chromatography. The khellactone ester isosamidin isolated from the aerial parts of S. andronakii emerged as a selective trypanocidal molecule (selectivity index ∼9) and inhibited amastigote replication in CHO-K1 cells, though it was significantly less potent than benznidazole. The khellactone ester praeruptorin B and the linear dihydropyranochromones 3'-O-acetylhamaudol and ledebouriellol isolated from the roots of P. ramosissima were more potent and efficiently inhibited the intracellular amastigote replication at < 10 µM. The furanocoumarins imperatorin, isoimperatorin and phellopterin from A. archangelica inhibited T. cruzi replication in host cells only in combination, indicative of superadditive effects, while alloimperatorin was more active in fractions. Our study reports preliminary structure-activity relationships of trypanocidal coumarins and shows that pyranocoumarins and dihydropyranochromones are potential chemical scaffolds for antichagasic drug discovery.


Chagas Disease , Trypanocidal Agents , Trypanosoma cruzi , Phylogeny , Trypanocidal Agents/pharmacology , Trypanocidal Agents/chemistry , Trypanocidal Agents/therapeutic use , Chagas Disease/drug therapy , Chagas Disease/parasitology , Coumarins/pharmacology , Coumarins/chemistry , Esters , Plant Extracts/pharmacology
8.
J Pharm Biomed Anal ; 234: 115529, 2023 Sep 20.
Article En | MEDLINE | ID: mdl-37364450

Petasites hybridus L. (butterbur, Asteraceae) is a well-known medicinal plant traditionally used as a remedy for neurological, respiratory, cardiovascular, and gastrointestinal disorders. Eremophilane-type sesquiterpenes (petasins) are considered to be the major bioactive constituents of butterbur. However, efficient methods to isolate high-purity petasins in sufficient amounts for further analytical and biological testing are lacking. In this study, various sesquiterpenes were separated from a methanol rootstock extract of P. hybridus with liquid-liquid chromatography (LLC). The appropriate biphasic solvent system was selected using the predictive thermodynamic model COSMO-RS and shake-flask experiments. After the selection of the feed (extract) concentration and operating flow rate, a batch LLC experiment was performed with n-hexane/ethyl acetate/methanol/water 5/1/5/1 (v/v/v/v). For those LLC fractions containing petasin derivatives with purities < 95%, a preparative high-performance liquid chromatography purification step followed. All isolated compounds were identified by state-of-the-art spectroscopic methods, i.e., liquid chromatography coupled with high-resolution tandem mass spectrometry and nuclear magnetic resonance techniques. As a result, six compounds were obtained, namely 8ß-hydroxyeremophil-7(11)-en-12,8-olide, 2-[(angeloyl)oxy]eremophil-7(11)-en-12,8-olide, 8α/ß-H-eremophil-7(11)-en-12,8-olide, neopetasin, petasin, and isopetasin. The isolated petasins can be further used as reference materials for standardization and pharmacological evaluation.


Asteraceae , Petasites , Sesquiterpenes , Petasites/chemistry , Tandem Mass Spectrometry , Methanol , Sesquiterpenes/analysis , Chromatography, Liquid , Asteraceae/chemistry , Magnetic Resonance Spectroscopy , Plant Extracts/pharmacology
9.
Int J Mol Sci ; 24(10)2023 May 12.
Article En | MEDLINE | ID: mdl-37240050

Anxiety is one of the most common central nervous system disorders, affecting at least one-quarter of the worldwide population. The medications routinely used for the treatment of anxiety (mainly benzodiazepines) are a cause of addiction and are characterized by many undesirable side effects. Thus, there is an important and urgent need for screening and finding novel drug candidates that can be used in the prevention or treatment of anxiety. Simple coumarins usually do not show side effects, or these effects are much lower than in the case of synthetic drugs acting on the central nervous system (CNS). This study aimed to evaluate the anxiolytic activity of three simple coumarins from Peucedanum luxurians Tamamsch, namely officinalin, stenocarpin isobutyrate, and officinalin isobutyrate, in a 5 dpf larval zebrafish model. Moreover, the influence of the tested coumarins on the expression of genes involved in the neural activity (c-fos, bdnf) or dopaminergic (th1), serotoninergic (htr1Aa, htr1b, htr2b), GABA-ergic (gabarapa, gabarapb), enkephalinergic (penka, penkb), and galaninergic (galn) neurotransmission was assessed by quantitative PCR. All tested coumarins showed significant anxiolytic activity, with officinalin as the most potent compound. The presence of a free hydroxyl group at position C-7 and the lack of methoxy moiety at position C-8 might be key structural features responsible for the observed effects. In addition, officinalin and its isobutyrate upregulated the expression of genes involved in neurotransmission and decreased the expression of genes connected with neural activity. Therefore, the coumarins from P. luxurians might be considered as promising drug candidates for the therapy of anxiety and related disorders.


Anti-Anxiety Agents , Animals , Anti-Anxiety Agents/pharmacology , Zebrafish/genetics , Fruit/chemistry , Isobutyrates/analysis , Anxiety/drug therapy , Anxiety/metabolism , Coumarins/chemistry , Gene Expression
10.
Pharmaceuticals (Basel) ; 16(5)2023 Apr 26.
Article En | MEDLINE | ID: mdl-37242431

Currently, there is an increased interest from both scientists and consumers in the application of cannabis/hemp/phytocannabinoids in skin-related disorders. However, most previous investigations assessed the pharmacological properties of hemp extracts, cannabidiol (CBD), or tetrahydrocannabinol (THC), with very few studies focusing on minor phytocannabinoids from hemp. In this context, the current work explored the in vitro anti-melanoma, anti-melanogenic, and anti-tyrosinase effects of cannabidiol (CBD) and three minor phytocannabinoids, namely cannabigerol (CBG), cannabinol (CBN), and cannabichromene (CBC). Among the tested human malignant melanoma cells (A375, SH4, and G361), only A375 cells were highly susceptible to the 48 h treatment with the four phytocannabinoids (IC50 values between 12.02 and 25.13 µg/mL). When melanogenesis was induced in murine melanoma B16F10 cells by α-melanocyte stimulating hormone (αMSH), CBD, CBG, and CBN significantly decreased the extracellular (29.76-45.14% of αMSH+ cells) and intracellular (60.59-67.87% of αMSH+ cells) melanin content at 5 µg/mL. Lastly, CBN (50-200 µg/mL) inhibited both mushroom and murine tyrosinase, whereas CBG (50-200 µg/mL) and CBC (100-200 µg/mL) down-regulated only the mushroom tyrosinase activity; in contrast, CBD was practically inactive. The current data show that tyrosinase inhibition might not be responsible for reducing the melanin biosynthesis in α-MSH-treated B16F10 cells. By evaluating for the first time the preliminary anti-melanoma, anti-melanogenic, and anti-tyrosinase properties of CBN and CBC and confirming similar effects for CBD and CBG, this study can expand the utilization of CBD and, in particular, of minor phytocannabinoids to novel cosmeceutical products for skin care.

11.
Plants (Basel) ; 12(9)2023 Apr 23.
Article En | MEDLINE | ID: mdl-37176799

The essential oil of Myristica fragrans Hutt. (nutmeg) is an important commodity used as a flavoring agent in the food, pharmaceutical, and cosmetic fields. Hydrodistillation is chiefly employed at the industrial scale for nutmeg essential oil isolation, but such a technique generates large quantities of post-distillation by-products (e.g., spent plant material and residual distillation water). Therefore, our work aimed to propose a novel strategy for the valorization of nutmeg wastes, with beneficial economic and ecological advantages. Thus, the current study assessed the phytochemical (GC-MS, LC-HRMS/MS) and biological (antioxidant, enzyme inhibitory, antimicrobial) profile of nutmeg crude materials (essential oil and total extract) and post-distillation by-products (residual water and spent material extract). Identified in these were 43 volatile compounds, with sabinene (21.71%), α-pinene (15.81%), myristicin (13.39%), and ß-pinene (12.70%) as the main constituents. LC-HRMS/MS analysis of the nutmeg extracts noted fifteen metabolites (e.g., organic acids, flavonoids, phenolic acids, lignans, and diarylnonanoids). Among the investigated nutmeg samples, the spent material extract was highlighted as an important source of bioactive compounds, with a total phenolic and flavonoid content of 63.31 ± 0.72 mg GAE/g and 8.31 ± 0.06 mg RE/g, respectively. Moreover, it showed prominent radical-scavenging and metal-reducing properties and significantly inhibited butyrylcholinesterase (4.78 ± 0.03 mg GALAE/g). Further, the spent material extract displayed strong antimicrobial effects against Streptococcus pneumoniae, Micrococcus luteus, and Bacillus cereus (minimum inhibitory concentrations of 62.5 mg/L). Overall, our study brings evidence on the health-promoting (antioxidant, anti-enzymatic, antimicrobial) potential of nutmeg post-distillation by-products with future reference to their valorization in the pharmaceutical, cosmeceutical, and food industries.

12.
Antioxidants (Basel) ; 12(4)2023 Mar 24.
Article En | MEDLINE | ID: mdl-37107172

In recent years, phytofunctionalized AgNPs have attracted great interest due to their remarkable biological activities. In the present study, AgNPs were synthesized using Abies alba and Pinus sylvestris bark extracts. The chemical profile of these bark extracts was analyzed by LC-HRMS/MS. As a first step, the synthesis parameters (pH, AgNO3 concentration, ratio of bark extract and AgNO3, temperature, and reaction time) were optimized. The synthesized AgNPs were characterized by ATR-FTIR spectroscopy, DLS, SEM, EDX, and TEM. Their antioxidant, cytotoxic, and antibacterial properties were evaluated by the DPPH, ABTS, MTT, and broth microdilution assays, respectively. Abies alba and Pinus sylvestris bark extract-derived AgNPs were well-dispersed, spherical, small (average particle size of 9.92 and 24.49 nm, respectively), stable (zeta potential values of -10.9 and -10.8 mV, respectively), and cytotoxic to A-375 human malignant melanoma cells (IC50 = 2.40 ± 0.21 and 6.02 ± 0.61 µg/mL, respectively). The phytosynthesized AgNPs also showed antioxidant and antibacterial effects.

13.
Int J Mol Sci ; 24(3)2023 Jan 30.
Article En | MEDLINE | ID: mdl-36768918

Epilepsy is a neurological disease that burdens over 50 million people worldwide. Despite the considerable number of available antiseizure medications, it is estimated that around 30% of patients still do not respond to available treatment. Herbal medicines represent a promising source of new antiseizure drugs. This study aimed to identify new drug lead candidates with antiseizure activity from endemic plants of New Caledonia. The crude methanolic leaf extract of Halfordia kendack Guillaumin (Rutaceae) significantly decreased (75 µg/mL and 100 µg/mL) seizure-like behaviour compared to sodium valproate in a zebrafish pentylenetetrazole (PTZ)-induced acute seizure model. The main coumarin compound, halfordin, was subsequently isolated by liquid-liquid chromatography and subjected to locomotor, local field potential (LFP), and gene expression assays. Halfordin (20 µM) significantly decreased convulsive-like behaviour in the locomotor and LFP analysis (by 41.4% and 60%, respectively) and significantly modulated galn, and penka gene expression.


Epilepsy , Pentylenetetrazole , Animals , Anticonvulsants/toxicity , Disease Models, Animal , Epilepsy/drug therapy , Pentylenetetrazole/pharmacology , Seizures/chemically induced , Seizures/drug therapy , Seizures/metabolism , Zebrafish
14.
Antioxidants (Basel) ; 12(2)2023 Jan 21.
Article En | MEDLINE | ID: mdl-36829802

Hydrodistillation is the main technique to obtain essential oils from rosemary for the aroma industry. However, this technique is wasteful, producing numerous by-products (residual water, spent materials) that are usually discarded in the environment. Supercritical CO2 (SC-CO2) extraction is considered an alternative greener technology for producing aroma compounds. However, there have been no discussions about the spent plant material leftover. Therefore, this work investigated the chemical profile (GC-MS, LC-HRMS/MS) and multi-biological activity (antimicrobial, antioxidant, enzyme inhibitory) of several raw rosemary materials (essential oil, SC-CO2 extracts, solvent extracts) and by-products/waste materials (post-distillation residual water, spent plant material extracts, and post-supercritical CO2 spent plant material extracts). More than 55 volatile organic compounds (e.g., pinene, eucalyptol, borneol, camphor, caryophyllene, etc.) were identified in the rosemary essential oil and SC-CO2 extracts. The LC-HRMS/MS profiling of the solvent extracts revealed around 25 specialized metabolites (e.g., caffeic acid, rosmarinic acid, salvianolic acids, luteolin derivatives, rosmanol derivatives, carnosol derivatives, etc.). Minimum inhibitory concentrations of 15.6-62.5 mg/L were obtained for some rosemary extracts against Micrococcus luteus, Bacilus cereus, or Staphylococcus aureus MRSA. Evaluated in six different in vitro tests, the antioxidant potential revealed strong activity for the polyphenol-containing extracts. In contrast, the terpene-rich extracts were more potent in inhibiting various key enzymes (e.g., acetylcholinesterase, butyrylcholinesterase, tyrosinase, amylase, and glucosidase). The current work brings new insightful contributions to the continuously developing body of knowledge about the valorization of rosemary by-products as a low-cost source of high-added-value constituents in the food, pharmaceutical, and cosmeceutical industries.

15.
Antioxidants (Basel) ; 12(1)2023 Jan 16.
Article En | MEDLINE | ID: mdl-36671072

There is currently no use for the vast quantities of post-distillation by-products, such as spent plant materials and residual waters, produced by the essential oil (EO) industry of aromatic herbs. In this study, the EOs of three Lamiaceae species (thyme, oregano, and basil) and their total, spent, and residual water extracts were phytochemically characterized and biologically assessed. The collected information was put through a series of analyses, including principal component analysis, heatmap analysis, and Pearson correlation analysis. Concerning the EOs, 58 volatile compounds were present in thyme (e.g., p-cymene, thymol), 44 compounds in oregano (e.g., thymol, carvacrol), and 67 compounds in basil (e.g., eucalyptol, linalool, estragole, (E)-methyl cinnamate). The LC-HRMS/MS analysis of the total, spent, and residual water extracts showed the presence of 31 compounds in thyme (e.g., quercetin-O-hexoside, pebrellin, eriodictyol), 31 compounds in oregano (e.g., rosmarinic acid, apigenin, kaempferol, salvianolic acids I, B, and E), and 25 compounds in basil (e.g., fertaric acid, cichoric acid, caftaric acid, salvianolic acid A). The EOs of the three Lamiaceae species showed the highest metal-reducing properties (up to 1792.32 mg TE/g in the CUPRAC assay), whereas the spent extracts of oregano and basil displayed very high radical-scavenging properties (up to 266.59 mg TE/g in DPPH assay). All extracts exhibited anti-acetylcholinesterase (up to 3.29 mg GALAE/g), anti-tyrosinase (up to 70.00 mg KAE/g), anti-amylase (up to 0.66 mmol ACAE/g), and anti-glucosidase (up to 1.22 mmol ACAE/g) effects. Thus, the present research demonstrated that both the raw extracts (EOs and total extracts) and the post-distillation by-products (spent material and residual water extracts) are rich in bioactive metabolites with antioxidant and enzyme inhibitory properties.

16.
J Chromatogr A ; 1691: 463824, 2023 Feb 22.
Article En | MEDLINE | ID: mdl-36709549

Liquid-liquid chromatography (LLC) is a technique in which the separation of mixture components is achieved due to their different distribution between the two phases of a pre-equilibrated biphasic solvent system. In this work, the LLC operation in the nonlinear range of the distribution isotherm was systematically examined for the first time. The influence of the feed concentration on the elution profiles of a model component (cannabidiol, CBD) was studied in three LLC units of different types and sizes ranging from ∼20 mL to ∼2 L. A series of pulse injections with CBD concentrations varying from 1 to 300 mg/mL was performed with n-hexane/methanol/water 5/4/1 (v/v/v) in descending mode (lower phase as the mobile phase). The elution profiles were simulated using the equilibrium-cell model and an anti-Langmuir-like equation for describing the CBD distribution equilibria. The distribution equilibria equation parameters were fitted to the CBD elution profiles using the peak fitting method. The model was validated and provided good predictions of the CBD elution profiles in the entire concentration range for all three LLC units.


Countercurrent Distribution , Methanol , Countercurrent Distribution/methods , Chromatography, Liquid/methods , Solvents/chemistry , Water/chemistry , Chromatography, High Pressure Liquid
17.
Food Chem ; 406: 135090, 2023 Apr 16.
Article En | MEDLINE | ID: mdl-36462355

Black pepper (P. nigrum L.) is considered one of the most valuable spices and a promising candidate in natural product research. In this study, the influence of different combinations of pressures (100-300 bar) and temperatures (40-60 °C) on the supercritical CO2 (SC-CO2) recovery of several key compounds from black pepper was evaluated systematically. The extraction curves showed that terpenes were recovered in a short time under all studied conditions. In contrast, higher pressure values were required to extract piperamides efficiently. Furthermore, the differences in the extraction kinetics of piperine, piperettine, pellitorine, guineensine, and N-isobutyl-2,4,14-eicosatrienamide were linked with several structural features, such as the nature of the amine group or the terminal part of the fatty acid. The data from the isocratic experiments represented the starting point for designing a two-step pressure gradient SC-CO2 process in which one terpene-rich and one piperamide-rich product were successively obtained.


Piper nigrum , Piper nigrum/chemistry , Carbon Dioxide/chemistry , Terpenes , Spices , Plant Extracts/chemistry
18.
J Ethnopharmacol ; 303: 116010, 2023 Mar 01.
Article En | MEDLINE | ID: mdl-36493995

ETHNOPHARMACOLOGICAL RELEVANCE: Comfrey (Symphytum officinale L., Boraginaceae) root preparations are used as both traditional remedies and therapeutic agents in treating pain and inflammation associated with joint, bone, and muscle ailments. Even though numerous phytochemicals contribute to the beneficial effects of comfrey, the presence of toxic pyrrolizidine alkaloids (PAs) overshadows its uses. AIM OF THE STUDY: In this work, different PA-/mucilage-depleted/undepleted comfrey root extracts were subjected to detailed phytochemical characterization and biological evaluation. MATERIALS AND METHODS: The phytochemical profiling was performed by LC-HRMS/MS. The quantification of PAs and major phenolic compounds was carried out by LC-MS/MS and LC-DAD. Antioxidant and enzyme inhibitory activity was determined by in vitro free radical scavenging, ion reducing, metal chelating, cholinesterase, tyrosinase, amylase, and glucosidase assays. Using an ex vivo model of LPS-stimulated neutrophils, their viability (as measured by flow cytometry) and the release of IL-1ß, IL-8, and TNF-α were determined (ELISA assay). RESULTS: 12 phenolic acids, six PAs, three organic acids, two fatty acids, and two sugars were identified in the obtained comfrey extracts. The PA-depleted materials contained PAs levels below 2 ppm, whereas the removal of mucilage increased the content of rosmarinic acid, globoidnan A, globoidnan B, and rabdosiin. PA-depletion did not significantly affect the antioxidant potential. However, the radical scavenging and metal reducing properties were higher in the mucilage-depleted extracts. Neither PA-depletion nor mucilage-depletion had considerable effects on the in vitro inhibitory activity of cholinesterases, tyrosinase, amylase, and glucosidase or release of ex vivo pro-inflammatory cytokines (e.g., IL-1ß, IL-8, and TNF-α) in LPS-stimulated neutrophils. CONCLUSIONS: In light of their superior safety profiles, PA-depleted comfrey extracts can be utilized further in cosmetic and pharmaceutical products.


Boraginaceae , Comfrey , Pyrrolizidine Alkaloids , Comfrey/chemistry , Pyrrolizidine Alkaloids/toxicity , Pyrrolizidine Alkaloids/analysis , Chromatography, Liquid , Antioxidants/pharmacology , Monophenol Monooxygenase , Interleukin-8 , Lipopolysaccharides , Tumor Necrosis Factor-alpha , Tandem Mass Spectrometry , Boraginaceae/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Phytochemicals/pharmacology
19.
Plants (Basel) ; 11(21)2022 Oct 27.
Article En | MEDLINE | ID: mdl-36365326

The Artemisia L. genus includes over five hundred species with great economic and medicinal properties. Our study aimed to provide a comprehensive metabolite and bioactivity profile of Artemisia campestris subsp. lednicensis (Spreng.) Greuter & Raab-Straube collected from north-eastern Romania. Liquid chromatography with tandem high-resolution mass spectrometry (LC-HRMS/MS) analysis of different polarity extracts obtained from the aerial parts led to the identification of twelve flavonoids, three phenolic acids, two sesquiterpene lactones, two fatty acids, one coumarin, and one lignan. The antioxidant and enzyme inhibitory properties were shown in the DPPH (0.71−213.68 mg TE/g) and ABTS (20.57−356.35 mg TE/g) radical scavenging, CUPRAC (38.56−311.21 mg TE/g), FRAP (121.68−202.34 mg TE/g), chelating (12.88−22.25 mg EDTAE/g), phosphomolybdenum (0.92−2.11 mmol TE/g), anti-acetylcholinesterase (0.15−3.64 mg GALAE/g), anti-butyrylcholinesterase (0−3.18 mg GALAE/g), anti-amylase (0.05−0.38 mmol ACAE/g), anti-glucosidase (0.43−2.21 mmol ACAE/g), and anti-tyrosinase (18.62−48.60 mg KAE/g) assays. At 100 µg/mL, Artemisia extracts downregulated the secretion of tumor necrosis factor (TNF)-α in a lipopolysaccharide (LPS)-stimulated human neutrophil model (29.05−53.08% of LPS+ control). Finally, the Artemisia samples showed moderate to weak activity (minimum inhibitory concentration (MIC) > 625 mg/L) against the seventeen tested microbial strains (bacteria, yeasts, and dermatophytes). Overall, our study shows that A. campestris subsp. lednicensis is a promising source of bioactives with putative use as food, pharmaceutical and cosmetic ingredients.

20.
Chem Biodivers ; 19(12): e202200315, 2022 Dec.
Article En | MEDLINE | ID: mdl-36282001

Series of synthetic coumarin derivatives (1-16) were tested against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), two enzymes linked to the pathology of Alzheimer's disease (AD). Compound 16 was the most active AChE inhibitor with IC50 32.23±2.91 µM, while the reference (galantamine) had IC50 =1.85±0.12 µM. Compounds 9 (IC50 75.14±1.82 µM), 13 (IC50 =16.14±0.43 µM), were determined to be stronger BChE inhibitors than the reference galantamine (IC50 =93.53±2.23 µM). The IC50 value of compound 16 for BChE inhibition (IC50 =126.56±11.96 µM) was slightly higher than galantamine. The atomic interactions between the ligands and the key amino acids inside the binding cavities were simulated to determine their ligand-binding positions and free energies. The three inhibitory coumarins (9, 13, 16) were next tested for their effects on the genes associated with AD using human neuroblastoma (SH-SY5Y) cell lines. Our data indicate that they could be considered for further evaluation as new anti-Alzheimer drug candidates.


Alzheimer Disease , Neuroblastoma , Humans , Butyrylcholinesterase/metabolism , Acetylcholinesterase/metabolism , Galantamine , Coumarins/pharmacology , Coumarins/chemistry , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/chemistry , Alzheimer Disease/drug therapy , Molecular Docking Simulation , Structure-Activity Relationship
...